Thermal Conductivity (polykin.properties.thermal_conductivity)¤
This module implements methods to calculate the thermal conductivity of pure gases, gas mixtures, pure liquids, and liquid mixtures.
KLMX2_Li ¤
KLMX2_Li(
w: FloatVectorLike,
k: FloatVectorLike,
rho: FloatVectorLike,
) -> float
Calculate the thermal conductivity of a liquid mixture from the thermal conductivities of the pure components using the Li mixing rule.
Note
In this equation, the units of mass fraction \(w_i\) and density \(\rho_i\) are arbitrary, as they cancel out when considering the ratio of the numerator to the denominator.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 565.
PARAMETER | DESCRIPTION |
---|---|
w
|
Mass fractions of all components. Unit = Any.
TYPE:
|
k
|
Thermal conductivities of all components. Unit = Any.
TYPE:
|
rho
|
Densities of all components, \(\rho\). Unit = Any.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Mixture thermal conductivity, \(k_m\). Unit = [k]. |
Examples:
Estimate the thermal conductivity of a 50 wt% styrene/isoprene liquid mixture at 20°C.
>>> from polykin.properties.thermal_conductivity import KLMX2_Li
>>> import numpy as np
>>> w = [0.5, 0.5]
>>> k = [0.172, 0.124] # W/(m·K), from literature
>>> rho = [0.909, 0.681] # kg/L
>>> k_mix = KLMX2_Li(w, k, rho)
>>> print(f"{k_mix:.2e} W/(m·K)")
1.43e-01 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/liquid.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
KVMX2_Wassilijewa ¤
KVMX2_Wassilijewa(
y: FloatVectorLike,
k: FloatVectorLike,
M: FloatVectorLike,
) -> float
Calculate the thermal conductivity of a gas mixture from the thermal conductivities of the pure components using the mixing rule of Wassilijewa, with the simplification of Herning and Zipperer.
Note
In this equation, the units of mole fraction \(y_i\) and molar mass \(M_i\) are arbitrary, as they cancel out when considering the ratio of the numerator to the denominator.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, pp. 410, 531.
PARAMETER | DESCRIPTION |
---|---|
y
|
Mole fractions of all components. Unit = Any.
TYPE:
|
k
|
Thermal conductivities of all components. Unit = Any.
TYPE:
|
M
|
Molar masses of all components. Unit = Any.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Mixture thermal conductivity, \(k_m\). Unit = [k]. |
Examples:
Estimate the thermal conductivity of a 50 mol% styrene/ethyl-benzene gas mixture at 25°C and 0.1 bar.
>>> from polykin.properties.thermal_conductivity import KVMX2_Wassilijewa
>>> y = [0.5, 0.5]
>>> k = [1.00e-2, 1.55e-2] # W/(m·K), from literature
>>> M = [104.15, 106.17] # g/mol
>>> k_mix = KVMX2_Wassilijewa(y, k, M)
>>> print(f"{k_mix:.2e} W/(m·K)")
1.28e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
KVMXPC_Stiel_Thodos ¤
KVMXPC_Stiel_Thodos(
v: float,
y: FloatVectorLike,
M: FloatVectorLike,
Tc: FloatVectorLike,
Pc: FloatVectorLike,
Zc: FloatVectorLike,
w: FloatVectorLike,
) -> float
Calculate the effect of pressure (or density) on the thermal conductivity of gas mixtures using the method of Stiel and Thodos for nonpolar components, combined with the mixing rules of Yorizane.
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 536.
PARAMETER | DESCRIPTION |
---|---|
v
|
Gas molar volume. Unit = m³/mol.
TYPE:
|
y
|
Mole fractions of all components. Unit = mol/mol.
TYPE:
|
M
|
Molar masses of all components. Unit = kg/mol.
TYPE:
|
Tc
|
Critical temperatures of all components. Unit = K.
TYPE:
|
Pc
|
Critical pressures of all components. Unit = Pa.
TYPE:
|
Zc
|
Critical compressibility factors of all components.
TYPE:
|
w
|
Acentric factors of all components.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Residual thermal conductivity, \((k_m - k_m^{\circ})\). Unit = W/(m·K). |
Examples:
Estimate the residual thermal conductivity of a 50 mol% ethylene/propylene mixture at 350 K and 100 bar.
>>> from polykin.properties.thermal_conductivity import KVMXPC_Stiel_Thodos
>>> import numpy as np
>>> v = 1.12e-4 # m³/mol, with Peng-Robinson
>>> y = [0.5, 0.5]
>>> M = [28.05e-3, 42.08e-3] # kg/mol
>>> Pc = [50.4e5, 46.0e5] # Pa
>>> Tc = [282.4, 364.9] # K
>>> Zc = [0.280, 0.274]
>>> w = [0.089, 0.144]
>>> k_residual = KVMXPC_Stiel_Thodos(v, y, M, Tc, Pc, Zc, w)
>>> print(f"{k_residual:.2e} W/(m·K)")
3.82e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
KVPC_Stiel_Thodos ¤
KVPC_Stiel_Thodos(
v: float, M: float, Tc: float, Pc: float, Zc: float
) -> float
Calculate the effect of pressure (or density) on the thermal conductivity of pure gases using the method of Stiel and Thodos for nonpolar components.
where \(k\) is the dense gas thermal conductivity, \(k^\circ\) is the low-pressure thermal conductivtiy, \(\Gamma\) is a group of constants, \(Z_c\) is the critical compressibility factor, and \(\rho_r = v_c / v\) is the reduced gas density. This equation is valid in the range \(0 \leq \rho_r < 2.8\).
References
- RC Reid, JM Prausniz, and BE Poling. The properties of gases & liquids 4th edition, 1986, p. 521.
PARAMETER | DESCRIPTION |
---|---|
v
|
Gas molar volume. Unit = m³/mol.
TYPE:
|
M
|
Molar mass. Unit = kg/mol.
TYPE:
|
Tc
|
Critical temperature. Unit = K.
TYPE:
|
Pc
|
Critical pressure. Unit = Pa.
TYPE:
|
Zc
|
Critical compressibility factor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Residual thermal conductivity, \((k - k^{\circ})\). Unit = W/(m·K). |
Examples:
Estimate the residual thermal conductivity of ethylene at 350 K and 100 bar.
>>> from polykin.properties.thermal_conductivity import KVPC_Stiel_Thodos
>>> v = 1.84e-4 # m³/mol, with Peng-Robinson
>>> k_residual = KVPC_Stiel_Thodos(v=v, M=28.05e-3,
... Tc=282.4, Pc=50.4e5, Zc=0.280)
>>> print(f"{k_residual:.2e} W/(m·K)")
1.69e-02 W/(m·K)
Source code in src/polykin/properties/thermal_conductivity/vapor.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
Gas | Liquid | |
---|---|---|
DIPPR equations | DIPPR100 , DIPPR102 |
DIPPR100 |
Estimation methods | — | — |
Mixing rules | KVMX2_Wassilijewa |
KLMX2_Li |
Pressure correction | KVPC_Stiel_Thodos , KVMXPC_Stiel_Thodos |
— |