Skip to content

polykin.properties.pvt_polymer¤

This module implements methods to evaluate the PVT behavior of pure polymers.

SanchezLacombe ¤

Sanchez-Lacombe equation of state for the specific volume of a polymer.

This EoS implements the following implicit PVT dependence:

\[ \frac{1}{\tilde{V}^2} + \tilde{P} + \tilde{T}\left [ \ln\left ( 1-\frac{1}{\tilde{V}} \right ) + \frac{1}{\tilde{V}} \right ]=0 \]

where \(\tilde{V}=V/V^*\), \(\tilde{P}=P/P^*\) and \(\tilde{T}=T/T^*\) are, respectively, the reduced volume, reduced pressure and reduced temperature. \(V^*\), \(P^*\) and \(T^*\) are reference quantities that are polymer dependent.

References

  • Caruthers et al. Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions. AIChE, 1998.
PARAMETER DESCRIPTION
V0

Reference volume, \(V^*\).

TYPE: float

T0

Reference temperature, \(T^*\).

TYPE: float

P0

Reference pressure, \(P^*\).

TYPE: float

Tmin

Lower temperature bound. Unit = K.

TYPE: float DEFAULT: 0.0

Tmax

Upper temperature bound. Unit = K.

TYPE: float DEFAULT: inf

Pmin

Lower pressure bound. Unit = Pa.

TYPE: float DEFAULT: 0.0

Pmax

Upper pressure bound. Unit = Pa.

TYPE: float DEFAULT: inf

name

Name.

TYPE: str DEFAULT: ''

Source code in src/polykin/properties/pvt_polymer/eos.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
class SanchezLacombe(PolymerPVTEoS):
    r"""Sanchez-Lacombe equation of state for the specific volume of a polymer.

    This EoS implements the following implicit PVT dependence:

    $$ \frac{1}{\tilde{V}^2} + \tilde{P} +
        \tilde{T}\left [ \ln\left ( 1-\frac{1}{\tilde{V}} \right ) +
        \frac{1}{\tilde{V}} \right ]=0 $$

    where $\tilde{V}=V/V^*$, $\tilde{P}=P/P^*$ and $\tilde{T}=T/T^*$ are,
    respectively, the reduced volume, reduced pressure and reduced temperature.
    $V^*$, $P^*$ and $T^*$ are reference quantities that are polymer dependent.

    **References**

    *   Caruthers et al. Handbook of Diffusion and Thermal Properties of
        Polymers and Polymer Solutions. AIChE, 1998.

    Parameters
    ----------
    V0 : float
        Reference volume, $V^*$.
    T0 : float
        Reference temperature, $T^*$.
    P0 : float
        Reference pressure, $P^*$.
    Tmin : float
        Lower temperature bound.
        Unit = K.
    Tmax : float
        Upper temperature bound.
        Unit = K.
    Pmin : float
        Lower pressure bound.
        Unit = Pa.
    Pmax : float
        Upper pressure bound.
        Unit = Pa.
    name : str
        Name.
    """

    @staticmethod
    def equation(v: float,
                 t: float,
                 p: float
                 ) -> tuple[float, float, float]:
        """Sanchez-Lacombe equation of state and its volume derivatives.

        Parameters
        ----------
        v : float
            Reduced volume.
        t : float
            Reduced temperature.
        p : float
            Reduced pressure.

        Returns
        -------
        tuple[float, float, float]
            Equation of state, first derivative, second derivative.
        """
        f = 1/v**2 + p + t*(log(1 - 1/v) + 1/v)  # =0
        d1f = ((t - 2)*v + 2)/((v - 1)*v**3)
        d2f = (-3*(t - 2)*v**2 + 2*(t - 6)*v + 6)/((v - 1)**2*v**4)
        return (f, d1f, d2f)

V ¤

V(
    T: Union[float, FloatArrayLike],
    P: Union[float, FloatArrayLike],
    Tunit: Literal["C", "K"] = "K",
    Punit: Literal["bar", "MPa", "Pa"] = "Pa",
) -> Union[float, FloatArray]

Evaluate the specific volume, \(\hat{V}\), at given temperature and pressure, including unit conversion and range check.

PARAMETER DESCRIPTION
T

Temperature. Unit = Tunit.

TYPE: float | FloatArrayLike

P

Pressure. Unit = Punit.

TYPE: float | FloatArrayLike

Tunit

Temperature unit.

TYPE: Literal['C', 'K'] DEFAULT: 'K'

Punit

Pressure unit.

TYPE: Literal['bar', 'MPa', 'Pa'] DEFAULT: 'Pa'

RETURNS DESCRIPTION
float | FloatArray

Specific volume. Unit = m³/kg.

Source code in src/polykin/properties/pvt_polymer/base.py
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
def V(self,
      T: Union[float, FloatArrayLike],
      P: Union[float, FloatArrayLike],
      Tunit: Literal['C', 'K'] = 'K',
      Punit: Literal['bar', 'MPa', 'Pa'] = 'Pa'
      ) -> Union[float, FloatArray]:
    r"""Evaluate the specific volume, $\hat{V}$, at given temperature and
    pressure, including unit conversion and range check.

    Parameters
    ----------
    T : float | FloatArrayLike
        Temperature.
        Unit = `Tunit`.
    P : float | FloatArrayLike
        Pressure.
        Unit = `Punit`.
    Tunit : Literal['C', 'K']
        Temperature unit.
    Punit : Literal['bar', 'MPa', 'Pa']
        Pressure unit.

    Returns
    -------
    float | FloatArray
        Specific volume.
        Unit = m³/kg.
    """
    TK = convert_check_temperature(T, Tunit, self.Trange)
    Pa = convert_check_pressure(P, Punit, self.Prange)
    return self.eval(TK, Pa)

alpha ¤

alpha(
    T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]

Calculate thermal expansion coefficient, \(\alpha\).

\[\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}\]
PARAMETER DESCRIPTION
T

Temperature. Unit = K.

TYPE: float | FloatArray

P

Pressure. Unit = Pa.

TYPE: float | FloatArray

RETURNS DESCRIPTION
float | FloatArray

Thermal expansion coefficient, \(\alpha\). Unit = 1/K.

Source code in src/polykin/properties/pvt_polymer/eos.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def alpha(self,
          T: Union[float, FloatArray],
          P: Union[float, FloatArray]
          ) -> Union[float, FloatArray]:
    r"""Calculate thermal expansion coefficient, $\alpha$.

    $$\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$$

    Parameters
    ----------
    T : float | FloatArray
        Temperature.
        Unit = K.
    P : float | FloatArray
        Pressure.
        Unit = Pa.

    Returns
    -------
    float | FloatArray
        Thermal expansion coefficient, $\alpha$.
        Unit = 1/K.
    """
    dT = 0.5
    V2 = self.eval(T + dT, P)
    V1 = self.eval(T - dT, P)
    return (V2 - V1)/dT/(V1 + V2)

beta ¤

beta(
    T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]

Calculate isothermal compressibility coefficient, \(\beta\).

\[\beta=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}\]
PARAMETER DESCRIPTION
T

Temperature. Unit = K.

TYPE: float | FloatArray

P

Pressure. Unit = Pa.

TYPE: float | FloatArray

RETURNS DESCRIPTION
float | FloatArray

Isothermal compressibility coefficient, \(\beta\). Unit = 1/Pa.

Source code in src/polykin/properties/pvt_polymer/eos.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def beta(self,
         T: Union[float, FloatArray],
         P: Union[float, FloatArray]
         ) -> Union[float, FloatArray]:
    r"""Calculate isothermal compressibility coefficient, $\beta$.

    $$\beta=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$$

    Parameters
    ----------
    T : float | FloatArray
        Temperature.
        Unit = K.
    P : float | FloatArray
        Pressure.
        Unit = Pa.

    Returns
    -------
    float | FloatArray
        Isothermal compressibility coefficient, $\beta$.
        Unit = 1/Pa.
    """
    dP = 1e5
    P2 = P + dP
    P1 = np.max(P - dP, 0)
    V2 = self.eval(T, P2)
    V1 = self.eval(T, P1)
    return -(V2 - V1)/(P2 - P1)/(V1 + V2)*2

equation staticmethod ¤

equation(
    v: float, t: float, p: float
) -> tuple[float, float, float]

Sanchez-Lacombe equation of state and its volume derivatives.

PARAMETER DESCRIPTION
v

Reduced volume.

TYPE: float

t

Reduced temperature.

TYPE: float

p

Reduced pressure.

TYPE: float

RETURNS DESCRIPTION
tuple[float, float, float]

Equation of state, first derivative, second derivative.

Source code in src/polykin/properties/pvt_polymer/eos.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
@staticmethod
def equation(v: float,
             t: float,
             p: float
             ) -> tuple[float, float, float]:
    """Sanchez-Lacombe equation of state and its volume derivatives.

    Parameters
    ----------
    v : float
        Reduced volume.
    t : float
        Reduced temperature.
    p : float
        Reduced pressure.

    Returns
    -------
    tuple[float, float, float]
        Equation of state, first derivative, second derivative.
    """
    f = 1/v**2 + p + t*(log(1 - 1/v) + 1/v)  # =0
    d1f = ((t - 2)*v + 2)/((v - 1)*v**3)
    d2f = (-3*(t - 2)*v**2 + 2*(t - 6)*v + 6)/((v - 1)**2*v**4)
    return (f, d1f, d2f)

eval ¤

eval(
    T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]

Evaluate specific volume, \(\hat{V}\), at given SI conditions without unit conversions or checks.

PARAMETER DESCRIPTION
T

Temperature. Unit = K.

TYPE: float | FloatArray

P

Pressure. Unit = Pa.

TYPE: float | FloatArray

RETURNS DESCRIPTION
float | FloatArray

Specific volume. Unit = m³/kg.

Source code in src/polykin/properties/pvt_polymer/eos.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
@vectorize
def eval(self,
         T: Union[float, FloatArray],
         P: Union[float, FloatArray]
         ) -> Union[float, FloatArray]:
    r"""Evaluate specific volume, $\hat{V}$, at given SI conditions without
    unit conversions or checks.

    Parameters
    ----------
    T : float | FloatArray
        Temperature.
        Unit = K.
    P : float | FloatArray
        Pressure.
        Unit = Pa.

    Returns
    -------
    float | FloatArray
        Specific volume.
        Unit = m³/kg.
    """
    t = T/self.T0
    p = P/self.P0
    solution = root_scalar(f=self.equation,
                           args=(t, p),
                           # bracket=[1.1, 1.5],
                           x0=1.05,
                           method='halley',
                           fprime=True,
                           fprime2=True)

    if solution.converged:
        v = solution.root
        V = v*self.V0
    else:
        print(solution.flag)
        V = -1.
    return V

from_database classmethod ¤

from_database(name: str) -> Optional[PolymerPVTEquation]

Construct PolymerPVTEquation with parameters from the database.

PARAMETER DESCRIPTION
name

Polymer code name.

TYPE: str

Source code in src/polykin/properties/pvt_polymer/base.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
@classmethod
def from_database(cls,
                  name: str
                  ) -> Optional[PolymerPVTEquation]:
    r"""Construct `PolymerPVTEquation` with parameters from the database.

    Parameters
    ----------
    name : str
        Polymer code name.
    """
    table = load_PVT_parameters(method=cls.__name__)
    try:
        mask = table.index == name
        parameters = table[mask].iloc[0, :].to_dict()
        return cls(**parameters, name=name)
    except IndexError:
        print(
            f"Error: '{name}' does not exist in polymer database.\n"
            f"Valid names are: {table.index.to_list()}")

get_database classmethod ¤

get_database() -> pd.DataFrame

Get database with parameters for the respective PVT equation.

Method Reference
Flory [2] Table 4.1.7 (p. 72-73)
Hartmann-Haque [2] Table 4.1.11 (p. 85-86)
Sanchez-Lacombe [2] Table 4.1.9 (p. 78-79)
Tait [1] Table 3B-1 (p. 41)

References

  1. Danner, Ronald P., and Martin S. High. Handbook of polymer solution thermodynamics. John Wiley & Sons, 2010.
  2. Caruthers et al. Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions. AIChE, 1998.
Source code in src/polykin/properties/pvt_polymer/base.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
@classmethod
def get_database(cls) -> pd.DataFrame:
    r"""Get database with parameters for the respective PVT equation.

    | Method          | Reference                            |
    | :-----------    | ------------------------------------ |
    | Flory           | [2] Table 4.1.7  (p. 72-73)          |
    | Hartmann-Haque  | [2] Table 4.1.11 (p. 85-86)          |
    | Sanchez-Lacombe | [2] Table 4.1.9  (p. 78-79)          |
    | Tait            | [1] Table 3B-1 (p. 41)               |

    **References**

    1.  Danner, Ronald P., and Martin S. High. Handbook of polymer
        solution thermodynamics. John Wiley & Sons, 2010.
    2.  Caruthers et al. Handbook of Diffusion and Thermal Properties of
        Polymers and Polymer Solutions. AIChE, 1998.
    """
    return load_PVT_parameters(method=cls.__name__)

Parameter databank¤

Polymer P0 V0 T0 Tmin Tmax Pmin Pmax
HDPE 4.798e+08 0.001073 596 415 473 0 2e+08
HDPE 3.662e+08 0.001095 615 413 476 0 1.96e+08
HMLPE 5.235e+08 0.001082 594 410 473 0 2e+08
BPE 4.113e+08 0.001088 601 398 471 0 2e+08
LDPE 4.679e+08 0.001071 577 394 448 0 1.96e+08
LDPE-A 4.299e+08 0.001083 603 385 498 0 1.96e+08
LDPE-B 4.214e+08 0.001088 610 385 498 0 1.96e+08
LDPE-C 4.318e+08 0.001084 606 385 498 0 1.96e+08
PIB 3.504e+08 0.001021 623 326 383 0 1e+08
i-PP 3.664e+08 0.001096 633 443 570 0 1.96e+08
a-PP 3.542e+08 0.001066 570 353 393 0 1e+08
i-PP 3.775e+08 0.001074 609 406 519 0 1.96e+08
PMP 3.557e+08 0.001115 650 514 592 0 1.96e+08
PMMA 5.169e+08 0.0007805 668 387 432 0 2e+08
PCHMA 4.101e+08 0.0008444 675 321 471 0 2e+08
PNBMA 4.421e+08 0.0008789 596 307 473 0 2e+08
PS 3.715e+08 0.0008929 688 388 469 0 2e+08
POMS 4.057e+08 0.0009142 725 412 471 0 1.8e+08
PVAC 5.013e+08 0.0007768 582 337 393 0 1e+08
PDMS 2.885e+08 0.0009022 466 298 343 0 1e+08
PTFE 3.572e+08 0.0004515 630 603 645 0 3.9e+08
PSF 6.353e+08 0.0007496 787 475 644 0 1.96e+08
PBD 4.402e+08 0.0009851 462 277 328 0 2.83e+08
PEO 4.922e+08 0.0008492 656 361 497 0 6.8e+07
PTHF 3.856e+08 0.0009652 645 335 439 0 7.8e+07
PET 7.261e+08 0.0007102 761 547 615 0 1.96e+08
PPO 5.541e+08 0.000822 681 476 593 0 1.76e+08
PC 5.744e+08 0.0007737 728 424 613 0 1.76e+08
PAR 5.687e+08 0.0007632 760 450 583 0 1.76e+08
PH 6.074e+08 0.0008032 690 341 573 0 1.76e+08
PEEK 7.13e+08 0.000731 804 619 671 0 2e+08
PVC 4.69e+08 0.0006686 656 373 423 0 2e+08
PA6 4.225e+08 0.0007406 785 509 569 0 1.96e+08
PA66 5.173e+08 0.0007502 713 519 571 0 1.96e+08
PVME 4.63e+08 0.000893 567 303 471 0 2e+08
PMA 5.219e+08 0.0007908 606 310 493 0 1.96e+08
PEA 4.506e+08 0.0008216 581 310 490 0 1.96e+08
PEMA 5.675e+08 0.0008189 602 386 434 0 1.96e+08
TMPC 4.324e+08 0.0008493 752 491 563 0 1.6e+08
HFPC 4.554e+08 0.0006077 680 432 553 0 2e+08
BCPC 5.136e+08 0.0006651 753 428 557 0 2e+08
PECH 4.824e+08 0.0006803 606 333 413 0 2e+08
PCL 4.534e+08 0.0008477 589 373 421 0 2e+08

Examples¤

Estimate the PVT properties of PMMA.

from polykin.properties.pvt_polymer import SanchezLacombe

# Parameters from Handbook of Diffusion and Thermal Properties of Polymers
# and Polymer Solutions, p.79. 
m = SanchezLacombe(
    V0=0.7805e-3,
    T0=668.,
    P0=516.9e6,
    Tmin=387.15,
    Tmax=432.15,
    Pmin=0.,
    Pmax=200e6,
    name="PMMA"
    )

print(m.V(127., 1500, Tunit='C', Punit='bar'))
print(m.alpha(400., 1.5e8))
print(m.beta(400., 1.5e8))
0.0008247134536260192
0.0003605514302589355
2.3526523085943523e-10
from polykin.properties.pvt_polymer import SanchezLacombe

# Parameters retrieved from internal databank 
m = SanchezLacombe.from_database("PMMA")

print(m.V(127., 1500, Tunit='C', Punit='bar'))
print(m.alpha(400., 1.5e8))
print(m.beta(400., 1.5e8))
0.0008247134536260192
0.0003605514302589355
2.3526523085943523e-10