Skip to content

polykin.properties.pvt_polymer¤

This module implements methods to evaluate the PVT behavior of pure polymers.

Flory ¤

Flory equation of state for the specific volume of a polymer.

This EoS implements the following implicit PVT dependence:

\[ \frac{\tilde{P}\tilde{V}}{\tilde{T}} = \frac{\tilde{V}^{1/3}}{\tilde{V}^{1/3}-1}-\frac{1}{\tilde{V}\tilde{T}}\]

where \(\tilde{V}=V/V^*\), \(\tilde{P}=P/P^*\) and \(\tilde{T}=T/T^*\) are, respectively, the reduced volume, reduced pressure and reduced temperature. \(V^*\), \(P^*\) and \(T^*\) are reference quantities that are polymer dependent.

References

  • Caruthers et al. Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions. AIChE, 1998.
PARAMETER DESCRIPTION
V0

Reference volume, \(V^*\).

TYPE: float

T0

Reference temperature, \(T^*\).

TYPE: float

P0

Reference pressure, \(P^*\).

TYPE: float

Tmin

Lower temperature bound. Unit = K.

TYPE: float DEFAULT: 0.0

Tmax

Upper temperature bound. Unit = K.

TYPE: float DEFAULT: inf

Pmin

Lower pressure bound. Unit = Pa.

TYPE: float DEFAULT: 0.0

Pmax

Upper pressure bound. Unit = Pa.

TYPE: float DEFAULT: inf

name

Name.

TYPE: str DEFAULT: ''

Source code in src/polykin/properties/pvt_polymer/eos.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class Flory(PolymerPVTEoS):
    r"""Flory equation of state for the specific volume of a polymer.

    This EoS implements the following implicit PVT dependence:

    $$ \frac{\tilde{P}\tilde{V}}{\tilde{T}} =
      \frac{\tilde{V}^{1/3}}{\tilde{V}^{1/3}-1}-\frac{1}{\tilde{V}\tilde{T}}$$

    where $\tilde{V}=V/V^*$, $\tilde{P}=P/P^*$ and $\tilde{T}=T/T^*$ are,
    respectively, the reduced volume, reduced pressure and reduced temperature.
    $V^*$, $P^*$ and $T^*$ are reference quantities that are polymer dependent.

    **References**

    *   Caruthers et al. Handbook of Diffusion and Thermal Properties of
        Polymers and Polymer Solutions. AIChE, 1998.

    Parameters
    ----------
    V0 : float
        Reference volume, $V^*$.
    T0 : float
        Reference temperature, $T^*$.
    P0 : float
        Reference pressure, $P^*$.
    Tmin : float
        Lower temperature bound.
        Unit = K.
    Tmax : float
        Upper temperature bound.
        Unit = K.
    Pmin : float
        Lower pressure bound.
        Unit = Pa.
    Pmax : float
        Upper pressure bound.
        Unit = Pa.
    name : str
        Name.
    """

    @staticmethod
    def equation(v: float,
                 t: float,
                 p: float
                 ) -> tuple[float, float, float]:
        r"""Flory equation of state and its volume derivatives.

        Parameters
        ----------
        v : float
            Reduced volume, $\tilde{V}$.
        t : float
            Reduced temperature, $\tilde{T}$.
        p : float
            Reduced pressure, $\tilde{P}$.

        Returns
        -------
        tuple[float, float, float]
            Equation of state, first derivative, second derivative.
        """
        f = p*v/t - (v**(1/3)/(v**(1/3) - 1) - 1/(v*t))  # =0
        d1f = p/t - 1/(t*v**2) - 1/(3*(v**(1/3) - 1)*v**(2/3)) + \
            1/(3*(v**(1/3) - 1)**2*v**(1/3))
        d2f = (2*(9/t + (v**(4/3) - 2*v**(5/3))/(-1 + v**(1/3))**3))/(9*v**3)
        return (f, d1f, d2f)

V ¤

V(
    T: Union[float, FloatArrayLike],
    P: Union[float, FloatArrayLike],
    Tunit: Literal["C", "K"] = "K",
    Punit: Literal["bar", "MPa", "Pa"] = "Pa",
) -> Union[float, FloatArray]

Evaluate the specific volume, \(\hat{V}\), at given temperature and pressure, including unit conversion and range check.

PARAMETER DESCRIPTION
T

Temperature. Unit = Tunit.

TYPE: float | FloatArrayLike

P

Pressure. Unit = Punit.

TYPE: float | FloatArrayLike

Tunit

Temperature unit.

TYPE: Literal['C', 'K'] DEFAULT: 'K'

Punit

Pressure unit.

TYPE: Literal['bar', 'MPa', 'Pa'] DEFAULT: 'Pa'

RETURNS DESCRIPTION
float | FloatArray

Specific volume. Unit = m³/kg.

Source code in src/polykin/properties/pvt_polymer/base.py
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
def V(self,
      T: Union[float, FloatArrayLike],
      P: Union[float, FloatArrayLike],
      Tunit: Literal['C', 'K'] = 'K',
      Punit: Literal['bar', 'MPa', 'Pa'] = 'Pa'
      ) -> Union[float, FloatArray]:
    r"""Evaluate the specific volume, $\hat{V}$, at given temperature and
    pressure, including unit conversion and range check.

    Parameters
    ----------
    T : float | FloatArrayLike
        Temperature.
        Unit = `Tunit`.
    P : float | FloatArrayLike
        Pressure.
        Unit = `Punit`.
    Tunit : Literal['C', 'K']
        Temperature unit.
    Punit : Literal['bar', 'MPa', 'Pa']
        Pressure unit.

    Returns
    -------
    float | FloatArray
        Specific volume.
        Unit = m³/kg.
    """
    TK = convert_check_temperature(T, Tunit, self.Trange)
    Pa = convert_check_pressure(P, Punit, self.Prange)
    return self.eval(TK, Pa)

alpha ¤

alpha(
    T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]

Calculate thermal expansion coefficient, \(\alpha\).

\[\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}\]
PARAMETER DESCRIPTION
T

Temperature. Unit = K.

TYPE: float | FloatArray

P

Pressure. Unit = Pa.

TYPE: float | FloatArray

RETURNS DESCRIPTION
float | FloatArray

Thermal expansion coefficient, \(\alpha\). Unit = 1/K.

Source code in src/polykin/properties/pvt_polymer/eos.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def alpha(self,
          T: Union[float, FloatArray],
          P: Union[float, FloatArray]
          ) -> Union[float, FloatArray]:
    r"""Calculate thermal expansion coefficient, $\alpha$.

    $$\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$$

    Parameters
    ----------
    T : float | FloatArray
        Temperature.
        Unit = K.
    P : float | FloatArray
        Pressure.
        Unit = Pa.

    Returns
    -------
    float | FloatArray
        Thermal expansion coefficient, $\alpha$.
        Unit = 1/K.
    """
    dT = 0.5
    V2 = self.eval(T + dT, P)
    V1 = self.eval(T - dT, P)
    return (V2 - V1)/dT/(V1 + V2)

beta ¤

beta(
    T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]

Calculate isothermal compressibility coefficient, \(\beta\).

\[\beta=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}\]
PARAMETER DESCRIPTION
T

Temperature. Unit = K.

TYPE: float | FloatArray

P

Pressure. Unit = Pa.

TYPE: float | FloatArray

RETURNS DESCRIPTION
float | FloatArray

Isothermal compressibility coefficient, \(\beta\). Unit = 1/Pa.

Source code in src/polykin/properties/pvt_polymer/eos.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def beta(self,
         T: Union[float, FloatArray],
         P: Union[float, FloatArray]
         ) -> Union[float, FloatArray]:
    r"""Calculate isothermal compressibility coefficient, $\beta$.

    $$\beta=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$$

    Parameters
    ----------
    T : float | FloatArray
        Temperature.
        Unit = K.
    P : float | FloatArray
        Pressure.
        Unit = Pa.

    Returns
    -------
    float | FloatArray
        Isothermal compressibility coefficient, $\beta$.
        Unit = 1/Pa.
    """
    dP = 1e5
    P2 = P + dP
    P1 = np.max(P - dP, 0)
    V2 = self.eval(T, P2)
    V1 = self.eval(T, P1)
    return -(V2 - V1)/(P2 - P1)/(V1 + V2)*2

equation staticmethod ¤

equation(
    v: float, t: float, p: float
) -> tuple[float, float, float]

Flory equation of state and its volume derivatives.

PARAMETER DESCRIPTION
v

Reduced volume, \(\tilde{V}\).

TYPE: float

t

Reduced temperature, \(\tilde{T}\).

TYPE: float

p

Reduced pressure, \(\tilde{P}\).

TYPE: float

RETURNS DESCRIPTION
tuple[float, float, float]

Equation of state, first derivative, second derivative.

Source code in src/polykin/properties/pvt_polymer/eos.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
@staticmethod
def equation(v: float,
             t: float,
             p: float
             ) -> tuple[float, float, float]:
    r"""Flory equation of state and its volume derivatives.

    Parameters
    ----------
    v : float
        Reduced volume, $\tilde{V}$.
    t : float
        Reduced temperature, $\tilde{T}$.
    p : float
        Reduced pressure, $\tilde{P}$.

    Returns
    -------
    tuple[float, float, float]
        Equation of state, first derivative, second derivative.
    """
    f = p*v/t - (v**(1/3)/(v**(1/3) - 1) - 1/(v*t))  # =0
    d1f = p/t - 1/(t*v**2) - 1/(3*(v**(1/3) - 1)*v**(2/3)) + \
        1/(3*(v**(1/3) - 1)**2*v**(1/3))
    d2f = (2*(9/t + (v**(4/3) - 2*v**(5/3))/(-1 + v**(1/3))**3))/(9*v**3)
    return (f, d1f, d2f)

eval ¤

eval(
    T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]

Evaluate specific volume, \(\hat{V}\), at given SI conditions without unit conversions or checks.

PARAMETER DESCRIPTION
T

Temperature. Unit = K.

TYPE: float | FloatArray

P

Pressure. Unit = Pa.

TYPE: float | FloatArray

RETURNS DESCRIPTION
float | FloatArray

Specific volume. Unit = m³/kg.

Source code in src/polykin/properties/pvt_polymer/eos.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
@vectorize
def eval(self,
         T: Union[float, FloatArray],
         P: Union[float, FloatArray]
         ) -> Union[float, FloatArray]:
    r"""Evaluate specific volume, $\hat{V}$, at given SI conditions without
    unit conversions or checks.

    Parameters
    ----------
    T : float | FloatArray
        Temperature.
        Unit = K.
    P : float | FloatArray
        Pressure.
        Unit = Pa.

    Returns
    -------
    float | FloatArray
        Specific volume.
        Unit = m³/kg.
    """
    t = T/self.T0
    p = P/self.P0
    solution = root_scalar(f=self.equation,
                           args=(t, p),
                           # bracket=[1.1, 1.5],
                           x0=1.05,
                           method='halley',
                           fprime=True,
                           fprime2=True)

    if solution.converged:
        v = solution.root
        V = v*self.V0
    else:
        print(solution.flag)
        V = -1.
    return V

from_database classmethod ¤

from_database(name: str) -> Optional[PolymerPVTEquation]

Construct PolymerPVTEquation with parameters from the database.

PARAMETER DESCRIPTION
name

Polymer code name.

TYPE: str

Source code in src/polykin/properties/pvt_polymer/base.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
@classmethod
def from_database(cls,
                  name: str
                  ) -> Optional[PolymerPVTEquation]:
    r"""Construct `PolymerPVTEquation` with parameters from the database.

    Parameters
    ----------
    name : str
        Polymer code name.
    """
    table = load_PVT_parameters(method=cls.__name__)
    try:
        mask = table.index == name
        parameters = table[mask].iloc[0, :].to_dict()
        return cls(**parameters, name=name)
    except IndexError:
        print(
            f"Error: '{name}' does not exist in polymer database.\n"
            f"Valid names are: {table.index.to_list()}")

get_database classmethod ¤

get_database() -> pd.DataFrame

Get database with parameters for the respective PVT equation.

Method Reference
Flory [2] Table 4.1.7 (p. 72-73)
Hartmann-Haque [2] Table 4.1.11 (p. 85-86)
Sanchez-Lacombe [2] Table 4.1.9 (p. 78-79)
Tait [1] Table 3B-1 (p. 41)

References

  1. Danner, Ronald P., and Martin S. High. Handbook of polymer solution thermodynamics. John Wiley & Sons, 2010.
  2. Caruthers et al. Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions. AIChE, 1998.
Source code in src/polykin/properties/pvt_polymer/base.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
@classmethod
def get_database(cls) -> pd.DataFrame:
    r"""Get database with parameters for the respective PVT equation.

    | Method          | Reference                            |
    | :-----------    | ------------------------------------ |
    | Flory           | [2] Table 4.1.7  (p. 72-73)          |
    | Hartmann-Haque  | [2] Table 4.1.11 (p. 85-86)          |
    | Sanchez-Lacombe | [2] Table 4.1.9  (p. 78-79)          |
    | Tait            | [1] Table 3B-1 (p. 41)               |

    **References**

    1.  Danner, Ronald P., and Martin S. High. Handbook of polymer
        solution thermodynamics. John Wiley & Sons, 2010.
    2.  Caruthers et al. Handbook of Diffusion and Thermal Properties of
        Polymers and Polymer Solutions. AIChE, 1998.
    """
    return load_PVT_parameters(method=cls.__name__)

Parameter databank¤

Polymer P0 V0 T0 Tmin Tmax Pmin Pmax
HDPE 5.376e+08 0.0009818 6548 415 473 0 2e+08
HDPE 3.767e+08 0.001013 7002 413 476 0 1.96e+08
HMLPE 6.043e+08 0.0009855 6458 410 473 0 2e+08
BPE 4.531e+08 0.0009992 6710 398 471 0 2e+08
LDPE 5.292e+08 0.0009794 6356 394 448 0 1.96e+08
LDPE-A 4.695e+08 0.0009963 6774 385 498 0 1.96e+08
LDPE-B 4.564e+08 0.001003 6896 385 498 0 1.96e+08
LDPE-C 4.71e+08 0.0009974 6809 385 498 0 1.96e+08
PIB 3.96e+08 0.0009455 7396 326 383 0 1e+08
i-PP 3.974e+08 0.001007 7011 443 570 0 1.96e+08
a-PP 4.059e+08 0.0009755 6351 353 393 0 1e+08
i-PP 4.039e+08 0.0009897 6838 406 519 0 1.96e+08
PMP 3.95e+08 0.00102 7079 514 592 0 1.96e+08
PMMA 5.688e+08 0.0007204 7717 387 432 0 2e+08
PCHMA 4.614e+08 0.0007772 7700 321 471 0 2e+08
PNBMA 5.096e+08 0.0008087 6794 307 473 0 2e+08
PS 4.052e+08 0.0008277 8118 388 469 0 2e+08
POMS 4.415e+08 0.0008457 8463 412 471 0 1.8e+08
PVAC 5.997e+08 0.000709 6449 337 393 0 1e+08
PDMS 3.269e+08 0.0008264 5184 298 343 0 1e+08
PTFE 3.078e+08 0.000878 5070 298 343 0 9e+08
PSF 3.133e+08 0.0008694 5288 298 343 0 9e+08
PBD 3.156e+08 0.0008531 5395 298 343 0 9e+08
PEO 3.23e+08 0.0008412 5470 298 343 0 9e+08
PTHF 3.115e+08 0.0008403 5554 298 343 0 9e+08
PET 3.115e+08 0.0008403 5554 298 343 0 9e+08
PPO 4.049e+08 0.0004215 7088 603 645 0 3.9e+08
PC 7.382e+08 0.0006847 8664 475 644 0 1.96e+08
PAR 4.544e+08 0.0009173 5522 277 328 0 2.83e+08
PH 6.016e+08 0.0007719 7147 361 497 0 6.8e+07
PEEK 4.598e+08 0.0008774 7006 335 439 0 7.8e+07
PVC 8.51e+08 0.0006452 8215 547 615 0 1.96e+08
PA6 6.509e+08 0.0007472 7360 476 593 0 1.76e+08
PA66 6.71e+08 0.000707 8039 424 613 0 1.76e+08
PVME 6.512e+08 0.0006991 8470 450 583 0 1.76e+08
PMA 7.132e+08 0.0007389 7869 341 573 0 1.76e+08
PEA 8.329e+08 0.0006642 8667 619 671 0 2e+08
PEMA 5.018e+08 0.0006201 7752 373 423 0 2e+08
TMPC 4.11e+08 0.0006896 9182 509 569 0 1.96e+08
HFPC 5.583e+08 0.0006885 7865 519 571 0 1.96e+08
BCPC 5.128e+08 0.0008266 6607 303 471 0 2e+08
PECH 5.992e+08 0.0007277 6894 310 493 0 1.96e+08
PCL 5.115e+08 0.0007563 6599 310 490 0 1.96e+08

Examples¤

Estimate the PVT properties of PMMA.

from polykin.properties.pvt_polymer import Flory

# Parameters from Handbook of Diffusion and Thermal Properties of Polymers
# and Polymer Solutions, p.72. 
m = Flory(
    V0=0.7204e-3,
    T0=7717.,
    P0=568.8e6,
    Tmin=387.15,
    Tmax=432.15,
    Pmin=0.1e6,
    Pmax=200e6,
    name="PMMA"
    )

print(m.V(127., 1500, Tunit='C', Punit='bar'))
print(m.alpha(400., 1.5e8))
print(m.beta(400., 1.5e8))
0.0008248219623602766
0.0003709734601636698
2.5411526814543353e-10
from polykin.properties.pvt_polymer import Flory

# Parameters retrieved from internal databank 
m = Flory.from_database("PMMA")

print(m.V(127., 1500, Tunit='C', Punit='bar'))
print(m.alpha(400., 1.5e8))
print(m.beta(400., 1.5e8))
0.0008248219623602766
0.0003709734601636698
2.5411526814543353e-10