polykin.properties.pvt_polymer¤
This module implements methods to evaluate the PVT behavior of pure polymers.
Flory ¤
Flory equation of state for the specific volume of a polymer.
This EoS implements the following implicit PVT dependence:
where \(\tilde{V}=V/V^*\), \(\tilde{P}=P/P^*\) and \(\tilde{T}=T/T^*\) are, respectively, the reduced volume, reduced pressure and reduced temperature. \(V^*\), \(P^*\) and \(T^*\) are reference quantities that are polymer dependent.
References
- Caruthers et al. Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions. AIChE, 1998.
PARAMETER | DESCRIPTION |
---|---|
V0
|
Reference volume, \(V^*\).
TYPE:
|
T0
|
Reference temperature, \(T^*\).
TYPE:
|
P0
|
Reference pressure, \(P^*\).
TYPE:
|
Tmin
|
Lower temperature bound. Unit = K.
TYPE:
|
Tmax
|
Upper temperature bound. Unit = K.
TYPE:
|
Pmin
|
Lower pressure bound. Unit = Pa.
TYPE:
|
Pmax
|
Upper pressure bound. Unit = Pa.
TYPE:
|
name
|
Name.
TYPE:
|
Source code in src/polykin/properties/pvt_polymer/eos.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
V ¤
V(
T: Union[float, FloatArrayLike],
P: Union[float, FloatArrayLike],
Tunit: Literal["C", "K"] = "K",
Punit: Literal["bar", "MPa", "Pa"] = "Pa",
) -> Union[float, FloatArray]
Evaluate the specific volume, \(\hat{V}\), at given temperature and pressure, including unit conversion and range check.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature.
Unit =
TYPE:
|
P
|
Pressure.
Unit =
TYPE:
|
Tunit
|
Temperature unit.
TYPE:
|
Punit
|
Pressure unit.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Specific volume. Unit = m³/kg. |
Source code in src/polykin/properties/pvt_polymer/base.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
alpha ¤
alpha(
T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]
Calculate thermal expansion coefficient, \(\alpha\).
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Thermal expansion coefficient, \(\alpha\). Unit = 1/K. |
Source code in src/polykin/properties/pvt_polymer/eos.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
beta ¤
beta(
T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]
Calculate isothermal compressibility coefficient, \(\beta\).
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Isothermal compressibility coefficient, \(\beta\). Unit = 1/Pa. |
Source code in src/polykin/properties/pvt_polymer/eos.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
equation
staticmethod
¤
equation(
v: float, t: float, p: float
) -> tuple[float, float, float]
Flory equation of state and its volume derivatives.
PARAMETER | DESCRIPTION |
---|---|
v
|
Reduced volume, \(\tilde{V}\).
TYPE:
|
t
|
Reduced temperature, \(\tilde{T}\).
TYPE:
|
p
|
Reduced pressure, \(\tilde{P}\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple[float, float, float]
|
Equation of state, first derivative, second derivative. |
Source code in src/polykin/properties/pvt_polymer/eos.py
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
eval ¤
eval(
T: Union[float, FloatArray], P: Union[float, FloatArray]
) -> Union[float, FloatArray]
Evaluate specific volume, \(\hat{V}\), at given SI conditions without unit conversions or checks.
PARAMETER | DESCRIPTION |
---|---|
T
|
Temperature. Unit = K.
TYPE:
|
P
|
Pressure. Unit = Pa.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Specific volume. Unit = m³/kg. |
Source code in src/polykin/properties/pvt_polymer/eos.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
from_database
classmethod
¤
from_database(name: str) -> Optional[PolymerPVTEquation]
Construct PolymerPVTEquation
with parameters from the database.
PARAMETER | DESCRIPTION |
---|---|
name
|
Polymer code name.
TYPE:
|
Source code in src/polykin/properties/pvt_polymer/base.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
get_database
classmethod
¤
get_database() -> pd.DataFrame
Get database with parameters for the respective PVT equation.
Method | Reference |
---|---|
Flory | [2] Table 4.1.7 (p. 72-73) |
Hartmann-Haque | [2] Table 4.1.11 (p. 85-86) |
Sanchez-Lacombe | [2] Table 4.1.9 (p. 78-79) |
Tait | [1] Table 3B-1 (p. 41) |
References
- Danner, Ronald P., and Martin S. High. Handbook of polymer solution thermodynamics. John Wiley & Sons, 2010.
- Caruthers et al. Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions. AIChE, 1998.
Source code in src/polykin/properties/pvt_polymer/base.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
Parameter databank¤
Polymer | P0 | V0 | T0 | Tmin | Tmax | Pmin | Pmax |
---|---|---|---|---|---|---|---|
HDPE | 5.376e+08 | 0.0009818 | 6548 | 415 | 473 | 0 | 2e+08 |
HDPE | 3.767e+08 | 0.001013 | 7002 | 413 | 476 | 0 | 1.96e+08 |
HMLPE | 6.043e+08 | 0.0009855 | 6458 | 410 | 473 | 0 | 2e+08 |
BPE | 4.531e+08 | 0.0009992 | 6710 | 398 | 471 | 0 | 2e+08 |
LDPE | 5.292e+08 | 0.0009794 | 6356 | 394 | 448 | 0 | 1.96e+08 |
LDPE-A | 4.695e+08 | 0.0009963 | 6774 | 385 | 498 | 0 | 1.96e+08 |
LDPE-B | 4.564e+08 | 0.001003 | 6896 | 385 | 498 | 0 | 1.96e+08 |
LDPE-C | 4.71e+08 | 0.0009974 | 6809 | 385 | 498 | 0 | 1.96e+08 |
PIB | 3.96e+08 | 0.0009455 | 7396 | 326 | 383 | 0 | 1e+08 |
i-PP | 3.974e+08 | 0.001007 | 7011 | 443 | 570 | 0 | 1.96e+08 |
a-PP | 4.059e+08 | 0.0009755 | 6351 | 353 | 393 | 0 | 1e+08 |
i-PP | 4.039e+08 | 0.0009897 | 6838 | 406 | 519 | 0 | 1.96e+08 |
PMP | 3.95e+08 | 0.00102 | 7079 | 514 | 592 | 0 | 1.96e+08 |
PMMA | 5.688e+08 | 0.0007204 | 7717 | 387 | 432 | 0 | 2e+08 |
PCHMA | 4.614e+08 | 0.0007772 | 7700 | 321 | 471 | 0 | 2e+08 |
PNBMA | 5.096e+08 | 0.0008087 | 6794 | 307 | 473 | 0 | 2e+08 |
PS | 4.052e+08 | 0.0008277 | 8118 | 388 | 469 | 0 | 2e+08 |
POMS | 4.415e+08 | 0.0008457 | 8463 | 412 | 471 | 0 | 1.8e+08 |
PVAC | 5.997e+08 | 0.000709 | 6449 | 337 | 393 | 0 | 1e+08 |
PDMS | 3.269e+08 | 0.0008264 | 5184 | 298 | 343 | 0 | 1e+08 |
PTFE | 3.078e+08 | 0.000878 | 5070 | 298 | 343 | 0 | 9e+08 |
PSF | 3.133e+08 | 0.0008694 | 5288 | 298 | 343 | 0 | 9e+08 |
PBD | 3.156e+08 | 0.0008531 | 5395 | 298 | 343 | 0 | 9e+08 |
PEO | 3.23e+08 | 0.0008412 | 5470 | 298 | 343 | 0 | 9e+08 |
PTHF | 3.115e+08 | 0.0008403 | 5554 | 298 | 343 | 0 | 9e+08 |
PET | 3.115e+08 | 0.0008403 | 5554 | 298 | 343 | 0 | 9e+08 |
PPO | 4.049e+08 | 0.0004215 | 7088 | 603 | 645 | 0 | 3.9e+08 |
PC | 7.382e+08 | 0.0006847 | 8664 | 475 | 644 | 0 | 1.96e+08 |
PAR | 4.544e+08 | 0.0009173 | 5522 | 277 | 328 | 0 | 2.83e+08 |
PH | 6.016e+08 | 0.0007719 | 7147 | 361 | 497 | 0 | 6.8e+07 |
PEEK | 4.598e+08 | 0.0008774 | 7006 | 335 | 439 | 0 | 7.8e+07 |
PVC | 8.51e+08 | 0.0006452 | 8215 | 547 | 615 | 0 | 1.96e+08 |
PA6 | 6.509e+08 | 0.0007472 | 7360 | 476 | 593 | 0 | 1.76e+08 |
PA66 | 6.71e+08 | 0.000707 | 8039 | 424 | 613 | 0 | 1.76e+08 |
PVME | 6.512e+08 | 0.0006991 | 8470 | 450 | 583 | 0 | 1.76e+08 |
PMA | 7.132e+08 | 0.0007389 | 7869 | 341 | 573 | 0 | 1.76e+08 |
PEA | 8.329e+08 | 0.0006642 | 8667 | 619 | 671 | 0 | 2e+08 |
PEMA | 5.018e+08 | 0.0006201 | 7752 | 373 | 423 | 0 | 2e+08 |
TMPC | 4.11e+08 | 0.0006896 | 9182 | 509 | 569 | 0 | 1.96e+08 |
HFPC | 5.583e+08 | 0.0006885 | 7865 | 519 | 571 | 0 | 1.96e+08 |
BCPC | 5.128e+08 | 0.0008266 | 6607 | 303 | 471 | 0 | 2e+08 |
PECH | 5.992e+08 | 0.0007277 | 6894 | 310 | 493 | 0 | 1.96e+08 |
PCL | 5.115e+08 | 0.0007563 | 6599 | 310 | 490 | 0 | 1.96e+08 |
Examples¤
Estimate the PVT properties of PMMA.
from polykin.properties.pvt_polymer import Flory
# Parameters from Handbook of Diffusion and Thermal Properties of Polymers
# and Polymer Solutions, p.72.
m = Flory(
V0=0.7204e-3,
T0=7717.,
P0=568.8e6,
Tmin=387.15,
Tmax=432.15,
Pmin=0.1e6,
Pmax=200e6,
name="PMMA"
)
print(m.V(127., 1500, Tunit='C', Punit='bar'))
print(m.alpha(400., 1.5e8))
print(m.beta(400., 1.5e8))
0.0008248219623602766
0.0003709734601636698
2.5411526814543353e-10
from polykin.properties.pvt_polymer import Flory
# Parameters retrieved from internal databank
m = Flory.from_database("PMMA")
print(m.V(127., 1500, Tunit='C', Punit='bar'))
print(m.alpha(400., 1.5e8))
print(m.beta(400., 1.5e8))
0.0008248219623602766
0.0003709734601636698
2.5411526814543353e-10