polykin.properties.diffusion¤
DL_Stokes_Einstein ¤
DL_Stokes_Einstein(T: float, R: float, mu: float) -> float
Estimate the diffusion coefficient of spherical particles using the Stokes-Einstein equation.
The diffusion coefficient of a dilute solution of spherical particles in a homogeneous fluid is given by:
where \(k_B\) is the Boltzmann constant, \(T\) is the temperature, \(\mu\) is the fluid viscosity, and \(R\) is the particle radius.
Note
The Stokes-Einstein equation is only valid for systems where the particle radius \(R\) is significantly larger than the radius of the fluid molecules. When the particle sizes are comparable, the actual diffusion coefficient is typically larger than predicted.
| PARAMETER | DESCRIPTION |
|---|---|
T
|
Temperature [K].
TYPE:
|
R
|
Particle radius [m].
TYPE:
|
mu
|
Viscosity [Pa.s].
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Diffusion coefficient [m²/s]. |
Examples:
Estimate the diffusion coefficient of latex particles with a 100 nm radius in water at 298 K.
>>> from polykin.properties.diffusion import DL_Stokes_Einstein
>>> D = DL_Stokes_Einstein(T=298.0, R=100e-9, mu=1e-3)
>>> print(f"{D:.1e} m²/s")
2.2e-12 m²/s
Source code in src/polykin/properties/diffusion/liquid.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | |