polykin.math¤
ode_rk ¤
ode_rk(
f: Callable[[float, float], float],
t0: float,
tf: float,
y0: float,
h: float,
order: Literal[1, 2, 4] = 1,
) -> float
Integrate an ODE using a fixed-step Runge-Kutta scheme.
This method is intentionally simple, so that it can be used inside a gradient-based optimizer without creating numerical noise and overhead.
Important
This method is jitted with Numba and, thus, requires a JIT-compiled function.
PARAMETER | DESCRIPTION |
---|---|
f
|
Function to be integrated. Takes two arguments,
TYPE:
|
t0
|
Initial value of
TYPE:
|
tf
|
Final value of
TYPE:
|
y0
|
Initial value of
TYPE:
|
h
|
Step size.
TYPE:
|
order
|
Order of the method. Defaults to 1 (i.e., Euler).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
Final value of |
Examples:
Find the solution of the differential equation \(y(t)'=y+t\) with initial condition \(y(0)=1\) at \(t=2\).
>>> from polykin.math import ode_rk
>>> from numba import njit
>>> def ydot(t, y):
... return y + t
>>> ode_rk(njit(ydot), 0., 2., 1., 1e-3, order=1)
11.763351307112204
>>> ode_rk(njit(ydot), 0., 2., 1., 1e-3, order=2)
11.778107275517668
>>> ode_rk(njit(ydot), 0., 2., 1., 1e-3, order=4)
11.778112197860988
Source code in src/polykin/math/solvers.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|