Skip to content

polykin.math¤

fzero_secant ¤

fzero_secant(
    f: Callable[[float], float],
    x0: float,
    x1: float,
    xtol: float = 1e-06,
    ftol: float = 1e-06,
    maxiter: int = 50,
) -> RootResult

Find the root of a scalar function using the secant method.

Unlike the equivalent method in scipy, this method also terminates based on the function value. This is sometimes a more meaningful stop criterion.

PARAMETER DESCRIPTION
f

Function whose root is to be found.

TYPE: Callable[[float], float]

x0

Inital guess.

TYPE: float

x1

Second guess.

TYPE: float

xtol

Absolute tolerance for x value. The algorithm will terminate when the change in x between two iterations is smaller than xtol.

TYPE: float DEFAULT: 1e-06

ftol

Absolute tolerance for function value. The algorithm will terminate when |f(x)|<ftol.

TYPE: float DEFAULT: 1e-06

maxiter

Maximum number of iterations.

TYPE: int DEFAULT: 50

RETURNS DESCRIPTION
RootResult

Dataclass with root solution results.

Examples:

Find a root of the Flory-Huggins equation.

>>> from polykin.math import fzero_secant
>>> from math import log
>>> def f(x, a=0.6, chi=0.4):
...     return log(x) + (1 - x) + chi*(1 - x)**2 - log(a)
>>> sol = fzero_secant(f, 0.3, 0.31)
>>> print(f"x= {sol.x:.3f}")
x= 0.213
Source code in src/polykin/math/solvers.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def fzero_secant(f: Callable[[float], float],
                 x0: float,
                 x1: float,
                 xtol: float = 1e-6,
                 ftol: float = 1e-6,
                 maxiter: int = 50
                 ) -> RootResult:
    r"""Find the root of a scalar function using the secant method.

    Unlike the equivalent method in [scipy](https://docs.scipy.org/doc/scipy/reference/optimize.root_scalar-secant.html),
    this method also terminates based on the function value. This is sometimes
    a more meaningful stop criterion.

    Parameters
    ----------
    f : Callable[[float], float]
        Function whose root is to be found.
    x0 : float
        Inital guess.
    x1 : float
        Second guess.
    xtol : float, optional
        Absolute tolerance for `x` value. The algorithm will terminate when the
        change in `x` between two iterations is smaller than `xtol`.
    ftol : float, optional
        Absolute tolerance for function value. The algorithm will terminate
        when `|f(x)|<ftol`.
    maxiter : int
        Maximum number of iterations.

    Returns
    -------
    RootResult
        Dataclass with root solution results.

    Examples
    --------
    Find a root of the Flory-Huggins equation.
    >>> from polykin.math import fzero_secant
    >>> from math import log
    >>> def f(x, a=0.6, chi=0.4):
    ...     return log(x) + (1 - x) + chi*(1 - x)**2 - log(a)
    >>> sol = fzero_secant(f, 0.3, 0.31)
    >>> print(f"x= {sol.x:.3f}")
    x= 0.213
    """

    f0 = f(x0)
    if (abs(f0) < ftol):
        return RootResult(True, 0, x0, f0)
    f1 = f(x1)
    if (abs(f1) < ftol):
        return RootResult(True, 0, x1, f1)

    success = False
    niter = 0
    while niter < maxiter:
        x2 = x1 - f1*(x1 - x0)/(f1 - f0)
        f2 = f(x2)
        niter += 1
        if (abs(x2 - x1) < xtol) or (abs(f2) < ftol):
            success = True
            break
        x0 = x1
        x1 = x2
        f0 = f1
        f1 = f2

    return RootResult(success, niter, x2, f2)