polykin.math.fixpoint¤
fixpoint_wegstein ¤
fixpoint_wegstein(
g: Callable[[FloatVector], FloatVector],
x0: FloatVector,
xtol: float = 1e-06,
wait: int = 1,
qmin: float = -5.0,
qmax: float = 0.0,
maxiter: int = 50,
) -> VectorRootResult
Find the solution of a N-dimensional fixed-point problem using the bounded Wegstein acceleration method.
The bounded Wegstein acceleration method is an extrapolation technique to accelerate the convergence of fixed-point iterations. For N-dimensional problems, each component of the fixed-point vector is treated separately according to:
where \(q_{min} \leq q_k \leq q_{max}\) is the acceleration parameter determined by:
When \(q=0\), the Wegstein method is equivalent to the standard fixed-point iteration. When \(q<0\), the convergence is accelerated, and when \(0<q<1\) the convergence is dampened.
References
- J.H. Wegstein, "Accelerating convergence of iterative processes", Communications of the ACM, 1(6): 9-13, 1958.
PARAMETER | DESCRIPTION |
---|---|
g
|
Identity function for the fixed-point problem, i.e.
TYPE:
|
x0
|
Initial guess.
TYPE:
|
xtol
|
Absolute tolerance for
TYPE:
|
wait
|
Number of direct substitution iterations before the first acceleration iteration.
TYPE:
|
qmin
|
Minimum value for the acceleration parameter.
TYPE:
|
qmax
|
Maximum value for the acceleration parameter.
TYPE:
|
maxiter
|
Maximum number of iterations.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
VectorRootResult
|
Dataclass with root solution results. |
See also
fixpoint_anderson
: alternative method better suited for problems with coupling between components.
Examples:
Find the solution of a 2D fixed-point function.
>>> from polykin.math import fixpoint_wegstein
>>> import numpy as np
>>> def g(x):
... x1, x2 = x
... g1 = 0.5*np.cos(x1) + 0.1*x2 + 0.5
... g2 = np.sin(x2) - 0.2*x1 + 1.2
... return np.array([g1, g2])
>>> sol = fixpoint_wegstein(g, x0=np.array([0.0, 0.0]), qmax=0.5)
>>> print(f"x={sol.x}")
x=[0.97458605 1.93830731]
>>> print(f"g(x)={g(sol.x)}")
g(x)=[0.97458605 1.93830731]
Source code in src/polykin/math/fixpoint/wegstein.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|