polykin.math.fixpoint¤
fixpoint_anderson ¤
fixpoint_anderson(
g: Callable[[FloatVector], FloatVector],
x0: FloatVector,
m: int = 3,
xtol: float = 1e-06,
maxiter: int = 50,
) -> VectorRootResult
Find the solution of a N-dimensional fixed-point function using Anderson acceleration.
PARAMETER | DESCRIPTION |
---|---|
g
|
Identity function for the fixed-point problem, i.e.
TYPE:
|
x0
|
Initial guess.
TYPE:
|
m
|
Number of previous steps (
TYPE:
|
xtol
|
Absolute tolerance for
TYPE:
|
maxiter
|
Maximum number of iterations.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
VectorRootResult
|
Dataclass with root solution results. |
Examples:
Find the solution of a 2D fixed-point function.
>>> from polykin.math import fixpoint_anderson
>>> import numpy as np
>>> def g(x):
... x1, x2 = x
... g1 = 0.5*np.cos(x1) + 0.1*x2 + 0.5
... g2 = np.sin(x2) - 0.2*x1 + 1.2
... return np.array([g1, g2])
>>> sol = fixpoint_anderson(g, x0=np.array([0.0, 0.0]))
>>> print(f"x={sol.x}")
x=[0.97458605 1.93830731]
>>> print(f"g(x)={g(sol.x)}")
g(x)=[0.97458605 1.93830731]
Source code in src/polykin/math/fixpoint/anderson.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|