polykin.hmt.correlations¤
Nu_sphere_free ¤
Nu_sphere_free(Ra: float, Pr: float) -> float
Calculate the Nusselt number for free convection on a sphere.
The average Nusselt number \(\overline{Nu}=\bar{h}D/k\) is estimated by the following expression:
\[ \overline{Nu} = 2 + \frac{0.589 Ra^{1/4}}{[1 + (0.469/Pr)^{9/16}]^{4/9}} \]
\[\begin{bmatrix}
Ra \lesssim 10^{11} \\
Pr \ge 0.7 \\
\end{bmatrix}\]
where \(Ra\) is the Rayleigh number and \(Pr\) is the Prandtl number. The properties are to be evaluated at the film temperature.
References
- Churchill, S.W, "Free convection around immersed bodies", in Heat Exchange Design Handbook, Section 2.5.7, Hemisphere Publishing, New York, 1983.
- Incropera, Frank P., and David P. De Witt. "Fundamentals of heat and mass transfer", 4th edition, 1996, p. 502.
| PARAMETER | DESCRIPTION |
|---|---|
Ra
|
Rayleigh number based on sphere diameter.
TYPE:
|
Pr
|
Prandtl number.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Nusselt number. |
See Also
Nu_sphere: related method for forced convection.
Examples:
Estimate the external heat transfer coefficient for a 50 mm sphere with a surface temperature of 330 K immersed in water with a bulk temperature of 290 K.
>>> from polykin.hmt import Nu_sphere_free
>>> rho = 1.0e3 # kg/m³
>>> mu = 0.70e-3 # Pa.s
>>> cp = 4.2e3 # J/kg/K
>>> k = 0.63 # W/m/K
>>> beta = 362e-6 # 1/K
>>> D = 50e-3 # m
>>> g = 9.81 # m/s²
>>> Pr = cp*mu/k
>>> Gr = g*beta*(330-290)*D**3/(mu/rho)**2
>>> Ra = Gr*Pr
>>> Nu = Nu_sphere_free(Ra, Pr)
>>> h = Nu*k/D
>>> print(f"h={h:.1e} W/m²·K")
h=7.8e+02 W/m²·K
Source code in src/polykin/hmt/correlations.py
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | |