polykin.flow.friction¤
vt_sphere ¤
vt_sphere(
Dp: float, rhop: float, rho: float, mu: float
) -> float
Calculate the terminal velocity of an isolated sphere in laminar or turbulent flow.
In both laminar and turbulent flow, the terminal velocity of an isolated sphere is given by:
where \(C_d(Re_p)\) is the drag coefficient. This implementation uses the drag correlation proposed by Turton and Levenspiel.
Tip
In laminar flow, \(v_t \propto D_p^2\), while in turbulent flow, \(v_t \propto D_p^{1/2}\).
References
- Turton, R., and O. Levenspiel. "A short note on the drag correlation for spheres", Powder technology 47.1 (1986): 83-86.
| PARAMETER | DESCRIPTION |
|---|---|
Dp
|
Particle diameter [m].
TYPE:
|
rhop
|
Particle density [kg/m³].
TYPE:
|
rho
|
Fluid density [kg/m³].
TYPE:
|
mu
|
Fluid viscosity [Pa·s].
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Terminal velocity [m/s]. |
See also
Examples:
Calculate the terminal velocity of a 1 mm styrene droplet in air.
>>> from polykin.flow import vt_sphere
>>> vt = vt_sphere(1e-3, 910., 1.2, 1.6e-5)
>>> print(f"vt = {vt:.1f} m/s")
vt = 3.8 m/s
Source code in src/polykin/flow/friction.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | |