Skip to content

polykin.flow.friction¤

Cd_sphere ¤

Cd_sphere(Rep: float) -> float

Calculate the drag coefficient of an isolated sphere.

For laminar as well as for turbulent flow, the drag coefficient is given by:

\[ C_{d} = \frac{24}{Re_p} \left(1 + 0.173 Re_p^{0.657}\right) + \frac{0.413}{1 + 16300 Re_p^{-1.09}} \]

where \(Re_p = \rho v D_p / \mu\) is the particle Reynolds number.

References

  • Turton, R., and O. Levenspiel. "A short note on the drag correlation for spheres", Powder technology 47.1 (1986): 83-86.
PARAMETER DESCRIPTION
Rep

Particle Reynolds number.

TYPE: float

RETURNS DESCRIPTION
float

Drag coefficient for an isolated sphere.

See also
  • vt_sphere: related method to estimate the terminal velocity.

Examples:

Calculate the drag coefficient for a tennis ball traveling at 30 m/s.

>>> from polykin.flow import Cd_sphere
>>> Dp = 6.7e-2  # m
>>> mu = 1.6e-5  # Pa·s
>>> rho = 1.2    # kg/m³
>>> v = 30.      # m/s
>>> Rep = rho*v*Dp/mu
>>> Cd = Cd_sphere(Rep)
>>> print(f"Cd = {Cd:.2f}")
Cd = 0.47
Source code in src/polykin/flow/friction.py
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def Cd_sphere(Rep: float) -> float:
    r"""Calculate the drag coefficient of an isolated sphere.

    For laminar as well as for turbulent flow, the drag coefficient is given
    by:

    $$ C_{d} = \frac{24}{Re_p} \left(1 + 0.173 Re_p^{0.657}\right) 
             + \frac{0.413}{1 + 16300 Re_p^{-1.09}} $$

    where $Re_p = \rho v D_p / \mu$ is the particle Reynolds number.

    **References**

    * Turton, R., and O. Levenspiel. "A short note on the drag correlation for
      spheres", Powder technology 47.1 (1986): 83-86.

    Parameters
    ----------
    Rep : float
        Particle Reynolds number.

    Returns
    -------
    float
        Drag coefficient for an isolated sphere. 

    See also
    --------
    * [`vt_sphere`](vt_sphere.md): related method to estimate the terminal
      velocity.

    Examples
    --------
    Calculate the drag coefficient for a tennis ball traveling at 30 m/s.
    >>> from polykin.flow import Cd_sphere
    >>> Dp = 6.7e-2  # m
    >>> mu = 1.6e-5  # Pa·s
    >>> rho = 1.2    # kg/m³
    >>> v = 30.      # m/s
    >>> Rep = rho*v*Dp/mu
    >>> Cd = Cd_sphere(Rep)
    >>> print(f"Cd = {Cd:.2f}")
    Cd = 0.47
    """
    return 24/Rep*(1 + 0.173*Rep**0.657) + 0.413/(1 + 16300*Rep**(-1.09))

Graphical Illustration¤

Cd_sphere