polykin.flow.friction¤
Cd_sphere ¤
Cd_sphere(Rep: float) -> float
Calculate the drag coefficient of an isolated sphere.
For laminar as well as for turbulent flow, the drag coefficient is given by:
\[ C_{d} = \frac{24}{Re_p} \left(1 + 0.173 Re_p^{0.657}\right)
+ \frac{0.413}{1 + 16300 Re_p^{-1.09}} \]
where \(Re_p = \rho v D_p / \mu\) is the particle Reynolds number.
References
- Turton, R., and O. Levenspiel. "A short note on the drag correlation for spheres", Powder technology 47.1 (1986): 83-86.
| PARAMETER | DESCRIPTION |
|---|---|
Rep
|
Particle Reynolds number.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
float
|
Drag coefficient for an isolated sphere. |
See also
vt_sphere: related method to estimate the terminal velocity.
Examples:
Calculate the drag coefficient for a tennis ball traveling at 30 m/s.
>>> from polykin.flow import Cd_sphere
>>> Dp = 6.7e-2 # m
>>> mu = 1.6e-5 # Pa·s
>>> rho = 1.2 # kg/m³
>>> v = 30. # m/s
>>> Rep = rho*v*Dp/mu
>>> Cd = Cd_sphere(Rep)
>>> print(f"Cd = {Cd:.2f}")
Cd = 0.47
Source code in src/polykin/flow/friction.py
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | |