Skip to content

polykin.copolymerization¤

radical_fractions_ternary ¤

radical_fractions_ternary(
    f1: Union[float, FloatArrayLike],
    f2: Union[float, FloatArrayLike],
    k12: float,
    k21: float,
    k13: float,
    k31: float,
    k23: float,
    k32: float,
) -> tuple[
    Union[float, FloatArray],
    Union[float, FloatArray],
    Union[float, FloatArray],
]

Calculate the radical fractions for a ternary system.

In a ternary system, the radical fractions \(p_i\) are related to the monomer composition \(f_i\) by:

\[\begin{aligned} a &= k_{21}k_{31}f_1^2+k_{21}k_{32}f_1f_2+k_{23}k_{31}f_1f_3 \\ b &= k_{12}k_{31}f_1f_2+k_{12}k_{32}f_2^2+k_{13}k_{32}f_2f_3 \\ c &= k_{12}k_{23}f_2f_3+k_{13}k_{21}f_1f_3+k_{13}k_{23}f_3^2 \\ p_1 &= \frac{a}{a+b+c} \\ p_2 &= \frac{b}{a+b+c} \\ p_3 &= \frac{c}{a+b+c} \end{aligned}\]

where \(k_{ij}\) are the cross-propagation rate coefficients. Note that the homo-propagation rate coefficients \(k_{ii}\) do not appear in the equations. For this reason, radical fractions cannot be evaluated from reactivity ratios alone.

References

  • Hamielec, A.E., MacGregor, J.F. and Penlidis, A. (1987), Multicomponent free-radical polymerization in batch, semi- batch and continuous reactors. Makromolekulare Chemie. Macromolecular Symposia, 10-11: 521-570.
PARAMETER DESCRIPTION
f1

Molar fraction of M1.

TYPE: float | FloatArrayLike

f2

Molar fraction of M2.

TYPE: float | FloatArrayLike

k12

Propagation rate coefficient.

TYPE: float

k21

Propagation rate coefficient.

TYPE: float

k13

Propagation rate coefficient.

TYPE: float

k31

Propagation rate coefficient.

TYPE: float

k23

Propagation rate coefficient.

TYPE: float

k32

Propagation rate coefficient.

TYPE: float

RETURNS DESCRIPTION
tuple[float | FloatArray, ...]

Radical fractions, \((p_1, p_2, p_3)\).

See also

Examples:

>>> from polykin.copolymerization import radical_fractions_ternary
>>> p1, p2, p3 = radical_fractions_ternary(
...              f1=0.5, f2=0.3, k12=500., k21=50.,
...              k13=30., k31=200., k23=300., k32=40.)
>>> print(f"p1 = {p1:.2f}; p2 = {p2:.2f}; p3 = {p3:.2f}")
p1 = 0.25; p2 = 0.48; p3 = 0.27
Source code in src/polykin/copolymerization/multicomponent.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def radical_fractions_ternary(f1: Union[float, FloatArrayLike],
                              f2: Union[float, FloatArrayLike],
                              k12: float,
                              k21: float,
                              k13: float,
                              k31: float,
                              k23: float,
                              k32: float,
                              ) -> tuple[Union[float, FloatArray],
                                         Union[float, FloatArray],
                                         Union[float, FloatArray]]:
    r"""Calculate the radical fractions for a ternary system.

    In a ternary system, the radical fractions $p_i$ are related to the
    monomer composition $f_i$ by:

    \begin{aligned}
    a &= k_{21}k_{31}f_1^2+k_{21}k_{32}f_1f_2+k_{23}k_{31}f_1f_3 \\
    b &= k_{12}k_{31}f_1f_2+k_{12}k_{32}f_2^2+k_{13}k_{32}f_2f_3 \\
    c &= k_{12}k_{23}f_2f_3+k_{13}k_{21}f_1f_3+k_{13}k_{23}f_3^2 \\
    p_1 &= \frac{a}{a+b+c} \\
    p_2 &= \frac{b}{a+b+c} \\
    p_3 &= \frac{c}{a+b+c}
    \end{aligned}

    where $k_{ij}$ are the cross-propagation rate coefficients. Note that the
    homo-propagation rate coefficients $k_{ii}$ do not appear in the equations.
    For this reason, radical fractions cannot be evaluated from reactivity
    ratios alone.

    **References**

    *   Hamielec, A.E., MacGregor, J.F. and Penlidis, A. (1987), Multicomponent
    free-radical polymerization in batch, semi- batch and continuous reactors.
    Makromolekulare Chemie. Macromolecular Symposia, 10-11: 521-570.

    Parameters
    ----------
    f1 : float | FloatArrayLike
        Molar fraction of M1.
    f2 : float | FloatArrayLike
        Molar fraction of M2.
    k12 : float
        Propagation rate coefficient.
    k21 : float
        Propagation rate coefficient.
    k13 : float
        Propagation rate coefficient.
    k31 : float
        Propagation rate coefficient.
    k23 : float
        Propagation rate coefficient.
    k32 : float
        Propagation rate coefficient.

    Returns
    -------
    tuple[float | FloatArray, ...]
        Radical fractions, $(p_1, p_2, p_3)$.

    See also
    --------
    * [`radical_fractions_multi`](radical_fractions_multi.md):
      generic method for multicomponent systems.

    Examples
    --------
    >>> from polykin.copolymerization import radical_fractions_ternary
    >>> p1, p2, p3 = radical_fractions_ternary(
    ...              f1=0.5, f2=0.3, k12=500., k21=50.,
    ...              k13=30., k31=200., k23=300., k32=40.)
    >>> print(f"p1 = {p1:.2f}; p2 = {p2:.2f}; p3 = {p3:.2f}")
    p1 = 0.25; p2 = 0.48; p3 = 0.27
    """

    f1 = np.asarray(f1)
    f2 = np.asarray(f2)
    f3 = 1. - (f1 + f2)

    p1 = k21*k31*f1**2 + k21*k32*f1*f2 + k23*k31*f1*f3
    p2 = k12*k31*f1*f2 + k12*k32*f2**2 + k13*k32*f2*f3
    p3 = k12*k23*f2*f3 + k13*k21*f1*f3 + k13*k23*f3**2

    denominator = p1 + p2 + p3

    p1 /= denominator
    p2 /= denominator
    p3 /= denominator

    return (p1, p2, p3)