polykin.copolymerization¤
radical_fractions_multi ¤
radical_fractions_multi(
f: FloatVectorLike, k: FloatSquareMatrix
) -> FloatVector
Calculate the radical fractions for a multicomponent system.
In a multicomponent system, the radical fractions \(p_i\) can be determined by solving the following set of linear algebraic equations:
where \(k_{ij}\) are the cross-propagation rate coefficients and \(f_i\) are the monomer compositions. Note that the homo-propagation rate coefficients \(k_{ii}\) do not appear in the equations. For this reason, radical fractions cannot be evaluated from reactivity ratios alone.
PARAMETER | DESCRIPTION |
---|---|
f
|
Vector of instantaneous monomer compositions, \(f_i\).
TYPE:
|
k
|
Matrix of cross-propagation rate coefficients. The diagonal elements \(k_{ii}\) are not used.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatVector(N)
|
Vector of radical fractions, \(p_i\). |
See also
radical_fractions_ternary
: specific method for terpolymer systems.
Examples:
>>> from polykin.copolymerization import radical_fractions_multi
>>> import numpy as np
Define the cross-propagation coefficient matrix.
>>> k = np.zeros((3, 3))
>>> k[0, 1] = 500.
>>> k[1, 0] = 50.
>>> k[0, 2] = 30.
>>> k[2, 0] = 200.
>>> k[1, 2] = 300.
>>> k[2, 1] = 40.
Evaluate the radical fractions at f1=0.5, f2=0.3, f3=0.2.
>>> f = [0.5, 0.3, 0.2]
>>> p = radical_fractions_multi(f, k)
>>> p
array([0.25012791, 0.47956341, 0.27030868])
Source code in src/polykin/copolymerization/multicomponent.py
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
|