polykin.copolymerization¤
inst_copolymer_ternary ¤
inst_copolymer_ternary(
f1: Union[float, FloatArrayLike],
f2: Union[float, FloatArrayLike],
r12: float,
r21: float,
r13: float,
r31: float,
r23: float,
r32: float,
) -> tuple[
Union[float, FloatArray],
Union[float, FloatArray],
Union[float, FloatArray],
]
Calculate the instantaneous copolymer composition for a ternary system.
In a ternary system, the instantaneous copolymer composition \(F_i\) is related to the monomer composition \(f_i\) by:
where \(r_{ij}=k_{ii}/k_{ij}\) are the multicomponent reactivity ratios.
References
- Kazemi, N., Duever, T.A. and Penlidis, A. (2014), Demystifying the estimation of reactivity ratios for terpolymerization systems. AIChE J., 60: 1752-1766.
PARAMETER | DESCRIPTION |
---|---|
f1
|
Molar fraction of M1.
TYPE:
|
f2
|
Molar fraction of M2.
TYPE:
|
r12
|
Reactivity ratio.
TYPE:
|
r21
|
Reactivity ratio.
TYPE:
|
r13
|
Reactivity ratio.
TYPE:
|
r31
|
Reactivity ratio.
TYPE:
|
r23
|
Reactivity ratio.
TYPE:
|
r32
|
Reactivity ratio.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple[float | FloatArray, ...]
|
Instantaneous terpolymer composition, \((F_1, F_2, F_3)\). |
See also
inst_copolymer_binary
: specific method for binary systems.inst_copolymer_multi
: generic method for multicomponent systems.
Examples:
>>> from polykin.copolymerization import inst_copolymer_ternary
>>> F1, F2, F3 = inst_copolymer_ternary(f1=0.5, f2=0.3, r12=0.2, r21=2.3,
... r13=3.0, r31=0.9, r23=0.4, r32=1.5)
>>> print(f"F1 = {F1:.2f}; F2 = {F2:.2f}; F3 = {F3:.2f}")
F1 = 0.32; F2 = 0.41; F3 = 0.27
Source code in src/polykin/copolymerization/multicomponent.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|