polykin.copolymerization¤
inst_copolymer_ternary ¤
inst_copolymer_ternary(
f1: float | FloatArrayLike,
f2: float | FloatArrayLike,
r12: float,
r21: float,
r13: float,
r31: float,
r23: float,
r32: float,
) -> tuple[
float | FloatArray,
float | FloatArray,
float | FloatArray,
]
Calculate the instantaneous copolymer composition for a ternary system.
In a ternary system, the instantaneous copolymer composition \(F_i\) is related to the monomer composition \(f_i\) by:
where \(r_{ij}=k_{ii}/k_{ij}\) are the multicomponent reactivity ratios.
References
- Kazemi, N., Duever, T.A. and Penlidis, A. (2014), Demystifying the estimation of reactivity ratios for terpolymerization systems. AIChE J., 60: 1752-1766.
| PARAMETER | DESCRIPTION |
|---|---|
f1
|
Molar fraction of M1.
TYPE:
|
f2
|
Molar fraction of M2.
TYPE:
|
r12
|
Reactivity ratio.
TYPE:
|
r21
|
Reactivity ratio.
TYPE:
|
r13
|
Reactivity ratio.
TYPE:
|
r31
|
Reactivity ratio.
TYPE:
|
r23
|
Reactivity ratio.
TYPE:
|
r32
|
Reactivity ratio.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
tuple[float | FloatArray, ...]
|
Instantaneous terpolymer composition, \((F_1, F_2, F_3)\). |
See Also
inst_copolymer_binary: specific method for binary systems.inst_copolymer_multi: generic method for multicomponent systems.
Examples:
>>> from polykin.copolymerization import inst_copolymer_ternary
>>> F1, F2, F3 = inst_copolymer_ternary(f1=0.5, f2=0.3, r12=0.2, r21=2.3,
... r13=3.0, r31=0.9, r23=0.4, r32=1.5)
>>> print(f"F1 = {F1:.2f}; F2 = {F2:.2f}; F3 = {F3:.2f}")
F1 = 0.32; F2 = 0.41; F3 = 0.27
Source code in src/polykin/copolymerization/multicomponent.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | |