polykin.copolymerization¤
inst_copolymer_multi ¤
inst_copolymer_multi(
f: Optional[FloatVectorLike],
r: Optional[FloatSquareMatrix],
P: Optional[FloatSquareMatrix] = None,
) -> FloatVector
Calculate the instantaneous copolymer composition for a multicomponent system.
In a multicomponent system, the instantaneous copolymer composition \(F_i\) can be determined by solving the following set of linear algebraic equations:
where \(P_{ij}\) are the transition probabilitites, which can be computed from the instantaneous monomer composition and the reactivity matrix.
References
- H. K. Frensdorff, R. Pariser; Copolymerization as a Markov Chain. J. Chem. Phys. 1 November 1963; 39 (9): 2303-2309.
PARAMETER | DESCRIPTION |
---|---|
f
|
Vector of instantaneous monomer compositions, \(f_i\).
TYPE:
|
r
|
Matrix of reactivity ratios, \(r_{ij}=k_{ii}/k_{ij}\).
TYPE:
|
P
|
Matrix of transition probabilities, \(P_{ij}\). If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatVector(N)
|
Vector of instantaneous copolymer compositions, \(F_i\). |
See also
inst_copolymer_binary
: specific method for binary systems.inst_copolymer_ternary
: specific method for terpolymer systems.monomer_drift_multi
: monomer composition drift.transitions_multi
: instantaneous transition probabilities.
Examples:
>>> from polykin.copolymerization import inst_copolymer_multi
>>> import numpy as np
Define the reactivity ratio matrix.
>>> r = np.ones((3, 3))
>>> r[0, 1] = 0.2
>>> r[1, 0] = 2.3
>>> r[0, 2] = 3.0
>>> r[2, 0] = 0.9
>>> r[1, 2] = 0.4
>>> r[2, 1] = 1.5
Evaluate the instantaneous copolymer composition at f1=0.5, f2=0.3, f3=0.2.
>>> f = [0.5, 0.3, 0.2]
>>> F = inst_copolymer_multi(f, r)
>>> F
array([0.32138111, 0.41041608, 0.26820282])
Source code in src/polykin/copolymerization/multicomponent.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|