polykin.copolymerization¤
inst_copolymer_binary ¤
inst_copolymer_binary(
f1: Union[float, FloatArrayLike],
r1: Union[float, FloatArray],
r2: Union[float, FloatArray],
) -> Union[float, FloatArray]
Calculate the instantaneous copolymer composition using the Mayo-Lewis equation.
For a binary system, the instantaneous copolymer composition \(F_i\) is related to the comonomer composition \(f_i\) by:
where \(r_i\) are the reactivity ratios. Although the equation is written using terminal model notation, it is equally applicable in the frame of the penultimate model if \(r_i \rightarrow \bar{r}_i\).
References
PARAMETER | DESCRIPTION |
---|---|
f1
|
Molar fraction of M1.
TYPE:
|
r1
|
Reactivity ratio of M1, \(r_1\) or \(\bar{r}_1\).
TYPE:
|
r2
|
Reactivity ratio of M2, \(r_2\) or \(\bar{r}_2\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float | FloatArray
|
Instantaneous copolymer composition, \(F_1\). |
See also
inst_copolymer_ternary
: specific method for terpolymer systems.inst_copolymer_multi
: generic method for multicomponent systems.
Examples:
>>> from polykin.copolymerization import inst_copolymer_binary
An example with f1 as scalar.
>>> F1 = inst_copolymer_binary(f1=0.5, r1=0.16, r2=0.70)
>>> print(f"F1 = {F1:.3f}")
F1 = 0.406
An example with f1 as list.
>>> F1 = inst_copolymer_binary(f1=[0.2, 0.6, 0.8], r1=0.16, r2=0.70)
>>> F1
array([0.21487603, 0.45812808, 0.58259325])
Source code in src/polykin/copolymerization/binary.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|