polykin.copolymerization¤
fit_Finemann_Ross ¤
fit_Finemann_Ross(
f1: FloatVectorLike, F1: FloatVectorLike
) -> tuple[float, float]
Fit binary copolymer composition data using the Finemann-Ross method.
where \(x = f_1/(1 - f_1)\), \(y = F_1/(1 - F_1)\), \(r_i\) are the reactivity ratios, \(f_1\) is the monomer composition, and \(F_1\) is the instantaneous copolymer composition.
Reference
- Fineman, M.; Ross, S. D. J. Polymer Sci. 1950, 5, 259.
Note
The Finemann-Ross method relies on a linearization procedure that can lead to significant statistical bias. The method is provided for its historical significance, but should no longer be used for fitting reactivity ratios.
PARAMETER | DESCRIPTION |
---|---|
f1
|
Vector of molar fraction of M1, \(f_1\).
TYPE:
|
F1
|
Vector of instantaneous copolymer composition of M1, \(F_1\).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple[float, float]
|
Point estimates of the reactivity ratios \((r_1, r_2)\). |
See also
fit_copo_data
: alternative (recommended) method.
Examples:
>>> from polykin.copolymerization.fitting import fit_Finemann_Ross
>>>
>>> f1 = [0.186, 0.299, 0.527, 0.600, 0.700, 0.798]
>>> F1 = [0.196, 0.279, 0.415, 0.473, 0.542, 0.634]
>>>
>>> r1, r2 = fit_Finemann_Ross(f1, F1)
>>> print(f"r1={r1:.2f}, r2={r2:.2f}")
r1=0.27, r2=0.84
Source code in src/polykin/copolymerization/fitting.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|