polykin.copolymerization¤
convert_Qe_to_r ¤
convert_Qe_to_r(
Qe_values: list[tuple[float, float]]
) -> FloatSquareMatrix
Convert Q-e values to reactivity ratios.
According to the Q-e scheme proposed by Alfrey and Price, the reactivity ratios of the terminal model can be estimated using the relationship:
\[ r_{ij} = \frac{Q_i}{Q_j}\exp{\left(-e_i(e_i -e_j)\right)} \]
where \(Q_i\) and \(e_i\) are monomer-specific constants, and \(r_{ij}=k_{ii}/k_{ij}\) is the multicomponent reactivity ratio matrix.
References
- T Alfrey, CC Price. J. Polym. Sci., 1947, 2: 101-106.
PARAMETER | DESCRIPTION |
---|---|
Qe_values
|
List (N) of Q-e values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FloatSquareMatrix(N, N)
|
Reactivity ratio matrix. |
Examples:
Estimate the reactivity ratio matrix for styrene (1), methyl methacrylate (2), and vinyl acetate(3) using Q-e values from the literature.
>>> from polykin.copolymerization import convert_Qe_to_r
>>>
>>> Qe1 = (1.0, -0.80) # Sty
>>> Qe2 = (0.78, 0.40) # MMA
>>> Qe3 = (0.026, -0.88) # VAc
>>>
>>> convert_Qe_to_r([Qe1, Qe2, Qe3])
array([[1.00000000e+00, 4.90888315e-01, 4.10035538e+01],
[4.82651046e-01, 1.00000000e+00, 1.79788736e+01],
[2.42325444e-02, 1.08066091e-02, 1.00000000e+00]])
Source code in src/polykin/copolymerization/multicomponent.py
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
|